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Abstract

Asymptotic and computational methods have been
Jtilized to study the incomoressible 3and transonic
flow over upper surface biown airfoils. To provide
a2 ‘ramework for more aporoximate simuiations which
are subsequently discussed, a full potential formu-
lation is given and various numerical treatments
are oroposed. [n this and the other models, the
probiem has been decomposed into the treatment of
the fine structure of the jet and the analysis of
the flow outside of it. Asymptotic expansions of
limit orocess type have been used %o treat the jet
in a thin layer aporoximation using suitable
strained variapbies. Although vorticity must be
accounted for in matching with the external flow,
its affect on the Spence boundary conditions
derived under irrotational assumptions is nil in
regions away ‘rom the traiiing edge ana jet axit.

A similar conclusion apolies for compressibility.
The cendition of flow pressurs and direction com-
patibility replacing the <utta conditicn for the
unoiown configuration indicates that a dividing
streamline leaves tangent to the upper surface of
the airfoil at the trailing edge. Computational
results for a USB airfoil indicate significant
anhancements in 1i7t with blowing. Comparisons
with experiments indicate that viscous wall jet
aeffects, wave interaction phenomena with the mixing
zones near the jet exit and trailing aedge layers
must be incornorated inta the model for improved
simuiation of the flow odhysics.

1.0 Introducticn

Uoper surface biowing (USB) has been oropased
1s 4 means of increasing usable 1ift and thereby
annancing //STOL cacability at low speeds in land-
ing configurations. At transonic Mach numbers, it
has the further application of achieving low turn
radii in dogfignt scanarios. The attandant high
accalarations are accomplished througn elimination
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of separation by suppression of adverse pressure
gradients in the viscous boundary layer, and also
movement of shocks downstream of the trailing edge,
thereby discouraging shock induced separation and
buffet at high maneuver incidences. Further appli-
cations of laminar flow control through stabiiiza-
tion using tangential blowing to achieve favorable
pressure gradients is of strong interest currently.

In the appiication of this concept, the
engine bleedoff, thrust, and structural penaities
required to achieve the foregoing aerodynamic
advantages is of importance to the designer. To
obtain this relationship, a knowledge of the
associated flow fields is required. Although
attention has been given to the jet flap in theo-
retical investigations, relatively little analysis
has been performed on upper surtace blown configu-
rations, For incomoressible speeds, the work of
Spence.!) represents the classical thin airfoil
treatment ¢f the jet flao problem. At transonic
Macn numbers, a computaticnai jet flap solution
based on small disturbance theory was developed for
1irfoils, and generalized for three-dimensionai
wings 5y Malmuth and Murchy.(2-3) In these araly-

-ses, the classical Karman Guderley model was

appiied with a generalized version of the Murman-
Cole successive line overrelaxation scheme(?) to
treat the ‘ree-jet boundaries. The jet was

assumed t0 be thin, and it was assumed on a
heyristic basis that the Spence Soundary conditions
were applicable across it. These conditions
involve aquilibration Setwaen the normal pressure
gradient and the centrifugal force associated with
the momentum in the jet.

In this paper, the ioplicapility of the condi-
tions will be analyzed for a compressible rota-
ticnal jet in the context of blowing upstream of
the trailing edge on the upper surface, i.e.,
Jpper surface blowing in contrast tc the jet flap
configuration in which the jet emanates from the
trailing edge. Furthermore, the thin airfoil jet
flap problem formulation stioulates an initial
angle of the jet at the trailing edge. I[n actual-
ity, this angle is a function of tne jet axit con-
ditions ind the local flow details, “or jet “laos
and USB. In both cases, the conditions for che
trailing edge dividing streamline represent a
generalization of the Kutta condition for the
unblown case. The aspect: of the paper invoiving
fine-structure of the jet layer represents an
extensjon of the earlier work of Malmuth and
Murphy(3) on transonic wall jets. From these
analyses, the paper will describe the numerical
approach to treat the USB oroblem, and various
results showing possibilities for 1ift augmentation
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will be presented. An additional significance of
the work is its reievance to the wake curvature
affects treated by Melnik and his coworkers(8) for
viscous flow over transonic airfoils.

Plan of Paper

In Section 2, various formulations and analyses
are provided wnich represent, in part, a critical
assessment of aifferent aspects of the jet flap
formulazion given in Ref. 1 and its extension to
JS8 for incompressible and compressible flows.
Section 2.1 gives a full potential formulation for
the USB orodlem which can be utiiized for future
computationai salutions and as a framework for the
more aporoximate thin airfoil theories wnich are
presented in subsequent sections. Candidate
numerical schemes are discussed but their imple-
mentation for the full potential formuiation will
te reported 2lsewhere. As a basis for the thin
airfoil and small disturbance models, the thin jet
approximation is described in terms of a systematic
asymptotic expansion procedure in Section 2.2 for
incompressibie flows. The generaiization of these
developments to compressible flow is straigntfor-
ward and therefore not provided. Section 2.3 pro-
vides a aiscussion of the trailing edge region
from the viewpoint of 3 nonuniformity of the thin
jet theory as well as the generalized Kutta condi-
tion for US3. I[nherent in this aspect is the
jeometry of the dividing streamline at the trailing
adge which is a necessary condition for the deter-
mination of the et sheet free boundary. Arguments
are grovided to substantiate tangency to the upper
surface providing the jet stagnation oressure is
greater than that cf the external flow. To relate
the internal jet structure to the 2xternal flow
with smphasis on boundary conditions, Section 2.4
illustrates now asymptotic matching principles
provide a systematic approximation to the boundary
conditions for a problem for fthe extarnal flow.
Also indicated is how the small disturbance jet
flap formuiation of Ref. 1 is modified with USB.
Finally, Section 3 gives rasults from a computa-
tional solution based on the smail disturbance
formulation of the earlier sections. I[n this sec-
tion, sransonic USB airfoils are anaiyzed and
comparisons are made with experiment. Factors
associated with the discrepancies are considered
and refinements are proposed to improve the
realism of the model.

2.0 Formulations and Analyses

2.1 Full Potential Theory

In Fig. 1, a2 USB configuration is shown.
3efore dealing with small disturbance theory, we
indicate the aporooriate formulation in a full
sotantial framework.

Jne procadure t0 treat the jroblem is £o intro-
duce seoarats jsotantials “or the internal flow in
the et region (denoted as Rj} and the axternal
region 2,. However, it is td be noted that irrota-
tional “Tow will result oniy if the entropy is con-
stant across <the jat axit olane AE. Thus, the
nodel will represent a1 subclass of other practical
cases where vorticity is introduced in the internal
ducting uostream of the jet exit. Within the
rastrictions, the aporopriata equations are

L8 J=(a2-9¢2 |6, -20 ¢ ¢
L < a a
5 iy ex) 2ex €% By iy
+ [a2-92 Jo, =0 (1a)
&y By
L(s.]=0 (15)

where %a and $; are the potentials in the regions
Re and Rj, respectively. Under the assumption of
irrotationality, the following energy invariants
axist in R, and R.:

P

ad 2 a?
e + qe s const. = C_ = —'-3— (2a
VT L et 2 G, v o )
2
2 as
ai o} ig |
T3+ 3 const. = C, o (2b)

wnere the subscript O signifies stagnation
conditions.

On the slip lines AB and CC, two sets of bound-
ary conditions are required since these lines are
‘ree in the sense that they interact with the
solution. The first of these is the tangency con-
dition in which these lines are streamlines of the
internal and external flow. Thus, on AB, which in
the coordinate system indicated in Fig. 1 is given
by

y = 6,(x)

the conditions are

5 (x.Su(x)) .
"x"fi"""' = S.QL = 5'(x) (3)
e Sy v

X X

where the arguments of the other members are the
same as the numerator of the first. [n addition to
(3), a jumo condition obtained from £as. (2a) and
(2b) apolies across AB and ZCD. This relation is
synonymous with the fact the static oressure is
continuous across each slip line, so that across
these boundaries

A (va |* - A, 78, =8 (4a)

holds, where

p(Y")r‘"’ a\t'f'])/v
e J
B gl R te— {db)
e 2a? v 2al
%o o

8z [;iv-l)/v . ,{v-:)/V]//é(y-1) : (4¢)
-0 ‘0

Similar conditions hoid on ZC0. In addition %0

(3) and (4), suitable conditions on the slooe of

AB and £C0 at the trailing edge A and C are
required to complete this part of the formuiation.
These would be gJetermined by continuity of oressure
and low angle at these 'ocations,oresumadly dy
some itarative orocedurs.
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On the surface of the airfoil, a condition of
the type (3) applies, i.e., if the upper surface
is given by

¥ =i ()

then

A similar relation holds for the lower airfoil sur-
face. For the far field,in R , a relation of the
2 e
type

Q:".g. , asrizx?+ylew

(Y = scaled y)

apolies aporoximately, where T is the circulation
on a circuit at r = = and 3 = tan~' ¥/x. Note that
the circuit includes contributions along the jet.
The far field in R; can be obtained by methods
similar to that developed by Malmuth and Murphy in
Ref. 5. To complete the formulation, initial con-
ditions at the jet exit and a suitable far field
downstream are required. I[f the former is subsonic,
Neumann or Dirichlet data are appropriate. I[f it
is supersonic, then Cauchy data are necessary.
Jownstream,data are ysad only if the flow is
locally subsonic.

At least three alternatives appear possible for
the solution of the aforementioned boundary value
oroblem. [n the first, no mappings are applied and
the problems are %0 be solved in the physical
(Cartesian) slane. This approach nas the advantage
of allowing highly develooed technigues %o be
apolied %o the Cartesian form of *the full potential
equations (FPE). Successful implementation would,
however, require means of dealing with the movable
free boundaries. In particular, stable extrapola-
tive and interpolative procedures would have to be
developed to nandle large free boundary shifts
between grid goints, with minimum error propagation.
In the Cartesian equation approach, it is envisioned
that the problem would be solved separately in
domains in Rj and Re on alternate cycles using
successive 1ine overrelaxaticn (SLOR). Conditions
in the other domain would be updated using "latest”
data from aither £4. (3) or (3).

The sacond method would use mapping procadures
such as thcse due to Thompson. Another possibility
is to open up the cut physical plane with the map-
oing w = /Z, where z = x + iy and w = u + iv. In
this mapping, the jet boundaries would oroject as
lines v = S{u). A subsequent shearing
transformation

v' = v = S{u)

VR

would bring the free bouncary on the real axis.

fet another mapoing procedure would be

{¢,7) = (x,u), where  i5 the stream “unction sat-
isfying the axact zontinuity equations. The advan-
tage of these mappings is that they would "freeze"
che ‘ree soundaries. A disadvantage is that they
wouid comoromise the 2guation in the sense that a
new numerizal method would orobably have %0 te

developed to affectively capture shocks and treat
the mixed field in an accurate ang compuytationally
afficient way. [ssues of stability, diagonal dom-
inance would have to be resolved. Similar gques-
tions would alsg arise in connection with a thirg
formulation involving the stream function , 3s 2
dependent variable. In contrast to the indepencent
variable case where the free boundary position is
known with unknown boundary conditions, this would
generate an unknown boundary carrying <nown data.

In spite of the attendant problem areas in the
full potential formulation, it represents 31 desir-
able longer range objective to treat thick configu-
rations and assess the accuracy of small disturd-
ance USB solutions. [n the short term, the smal!
disturbance solution has been implemented bSecause
of its simplicity of extansion to three dimensions
and its ease in integration with other inverse
procedures that we have Jeveloped to remove shocks
on unblown airfoils. Within this framework, the
free boundaries can be more easily treated due to
the appropriateness c¢f transfer of boundary
conditions.

2.2 Thin Jet Theory

As an essential ingredient of a small disturb-
ance formulation, the jet structure is developed in
this section for purposes of specification of the
Soundary conditions. In particular, it will be
shown how the Spence theary of Ref. 1 can be
derived from a systematic approximation crocedure.

Referring to Fig. 2, a section of the jet is
shown. A curvilinear ccordinate system is embeddes
in the jet as indicated. The lines n = constant
are sarallel tg a reference line (the 7 axis) which
only under special circumstances coincides with the
centerline of the jet. Otherwise, the 3 axis is a
reference line wnich is the centerline of an
approximate paraliel “low to be discussed subse-
quentiy. In this coordinate system, the lines
Z = constant are normais t3 5 axis. In wnat fol-
lows, the incomoressible case ~ill he discussed.
The generalizations to compressible flow are
straightforward.

Aithin the indicated ccordinate system, the
exact equations of motion are

Continuity

g+=haq =0

an 1

oW
o

““"I-u

5 = Momentum

e

3. 3Q, - TN - 19 - S, A

_-i—_ibq T-.‘. --'.:.n::lég (sb’\
no3z " 3n h 3In oh 3¢

7 = Momentum

q. 3a, 3, aF . %2

TR LR TR e (8e)

where n, the metric ccefficient when related to the
differential arc length in Cartesian (x,y)
coordinates is

dx® + dy? = h3(5,n)dg? + dn?

h(§,n) = 1 = 4/R(E) (6)
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with R(Z) being the radius of curvature which is
shown positive in Fig. 2.

To obtain an approximate incompressible set of
equations prototypic of the compressible case, the
thin jet limit is considered. The characteristic
jet thickness is shown in Fig. 2, where the jet
boundary is denoted as n = tH(3).

Ae now define a thin jet limit

t=0, 3,0* = n/t fixed (7)
~here the bdoundary layer coordinate n* is intro-
duced to keep the jet slip lines in view in the
limit process. In (7), the appropriate representa-
tions to yield a nontrivial structure are

a=(S.n5t)

2 IT_ Jo(i'“.) + VT 'J1(':,n') ++e0 (3a3)

‘T

3

s L3/2

—.J- As Vo 4= \Ivl = (Sb)
g - - cee

;U—Z Do * -91 * (BC)

~nere !J is some typical freestream velocity. The
orders were selected to give the "richest" possible
set of equations and, consistent with this, produce
forcing tarms in the 2gquations for the second order
quantities. These orders are consistent with the
massless momentum source model of Spence. (1)

Suostitution of (8) in (5) and equating like
orders gives the following equations for the
approximate Juantities:

u v
0 0
-.’—_:'*-;?;’ 3 (9a)
u 3u
o - -—jﬂ
g * Yo" O (s0)
ud 3P
2 ..
() i {(9¢)
:u! 5V1 1 3
TR ) o)
3y 3u1 3u Buo
T T TR
Uav 3u 30 >
B - NS e S
e dadat 2 b i
2uau, 3P v v uin*
9 AR FRAE.., - i Ll
WU Vet e 1

The aporooriatea boundary conditions involve
statements reqarding the “act that the jet bound-
iries are streamlines and that the static pressuyre
is continuous across the slip lines. The upper and
Tower slip lines SJ and Sl = 0 are given by

S ""750(':: ‘7151(5)'0 ’ (b1(£TE’)'Ij)

J

S,% 7+ thy(5) #2315, (SIH(5=5eg) * 0

where symmetry has been assumed to leading order,
and the jet flow has been aivided into two portions
£ < &g and > Zyg, with S7p reoresenting the
trailing edge position and the fact that the trail-
ing edge is a streamline (no jet width perturba-
tion) is introduced by the Heaviside function H,
defined as

A(x) =0, x <0
=0 x20

. Based on the foregoing discussion, the condi-
tion that jet boundaries S ire streamlines is

39520

where § = (qr,q,). Substitution of the expansions
(8) into this relation gives:

gl8adg) = By(3) up(3i0g) ) (11a)
vglBacby) = b3(E) uy(Eubg) } (11b)
V1(5.b0) " bi(i) Uo(avbo) (1e)

vi(8s-0g) = -by(3) uylZ.bg) + B4y

Qr

. g - A
* b (“1‘ 5 557) -8y 5 - (119)

The other conditions involving continuity of
pressure are:

W)

(uglr)

= axt'” -\ (

Po(5sbg) g q,(&) (12a)
BDO , X

wnere we assume for the pyesent argument that the
external pressure field Péil is prescribed. In

addition, t << £ has been also implicitly assumed.
For = = 0(3), (12b) would be presumably changed to
reflect a second order perturbation of the outer
flow. In actuality, it is determined iteratively
and interacts with the internal jet ‘low.

Solutions

First Order Theory

We introduce the zero:” order stream function
given by
T e Y Q;U
5 0’ an*

o
<

Yo

w

and employ the “oilowing transformation €or the
independent va-iables

(§on*) = (Esd) . (13)

JUnder (13), the diffarential operators map as
follows:

3 3 3
1A Y-S I T
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T* " Y 3y
and £3s. (9) become
3u ju v
) s 0., (
% "o o 0 (142)
3u
20 (14p)
) 3
- 3% ; (14c)

For simpiicity and without excessive loss of
generality, we consider a constant velocity jet
exit (3=9) initial profile parallel to the wall,
i.a.,

a.(0,n*)
=g C =ua(0,n*) = € (15a)
q,(0,1%) = 0 = vy(0,n") . (15b)

gquations (14) have the foliowing solutions on
application of (15), (11a), (11b) and (12a):

Uy = ugle) = ¢ 1 (16a)
Vs = q i (]6b)
0A(Z,a*) = (1-n*) ¢ + (z) (16¢)
O\w)n g T Q,J 5 C/
= s
By * ! (16d)
4= Lo J (16e)
Ciscussicn

Zquations (16) describe a parallel flow jet.
The §ata1 jump in pressure across the jet from
(16¢) fis

(gl = 2(5,1) - a(5,-1) = 2C*/R (17)

anich agrees with the Spence model. It should be
noted that in contrast %o the latter, no assumption
regarding irrotationality is required to obtain
(17), in contrast %0 the results of previous
workers. The radius of curvature of the jet is
approximately R upstream of the trailing edge which
in turn is approximately given by that of the blown
upper surface. Cownstream of the trailing edge,
R is determined from applying (17) to the determi-
nation of the flow outside of the jet. Upstream of
the trailing edge, the wall oressure is detarmined
by (17) since R is known and is given by
202
p(5,-1) = B v g (2) . (18)

Second Order Theory

Zquations (10) have been solved subject to the
boundary conditions {1l¢c), (11d), (12b) and the
initial condition at the jet exit 5=0

:J1(0"-:’) -~ 0

to give the following solution, where the first
order solution (16} is assumed:

r/ 'V(R)'ﬁ- n*+ u.(1/R)"'
1 A/
’ 1 ] dy o]
l (nf b=  0'SE re (19a)
!' - -
( %
1 vy v.:'L) -,‘Jl []#-\t]vuaﬂ/R)l
3 el AP
& g‘“'-TJ P 325 (196)
ﬁ Vq(Gpgtamt) = =a(0%)/u, (19¢)
‘l-‘(fTE'w],‘ =0 {’gd)

Uy = uo(l-ﬂ')[R(O)"- R™']1+(q,(0) - q )/uy (19)

= - /42 )
5 2(:u qu(O),/Jo (19f)
2“6 n*? 1] "5 o 1]
= - m® - - - -t
i*mRpoT |70 *ZJ'RZ |2 K|
- 2n* "
L (q,(0)-q,1 . (19g)

Besides “2 - 0, another nonuniformity is
evident in (1%) and (19¢) and is associated with
the factor a;(i} as i = Zpp, IF the latter

approaches =, As we will see, :nis occurs ‘or
trailing edge angles less than 60°.

2.3 Trailing £dge 3ehavior

Incomoressible Flows

Cefining the compiex potential function is
F(2) = a(x,y) + iw(x,y)

where (x,y) is the local coordinate sys:am shown
in Fig. 3 and z = x+iy, the local “corner “low'
solution to within a dimensional multiplicative
constant in the lower external region A'0B with
3 as the dividing streamline angie shown is
given by

£ 2 e'f?'('r‘-))/e z'r/S (20)
which implies that the square of the resyltant
velocity q is

[f7]|% =« g* ~ #(}"') - (20')

To obtain the necessary initial conaitions for
determination of the jet, the impiications of con-
tinuous pressure and flow angla across the divicing

treaml ine near the trailing adge were studied “or
incompressible “low. Raeferring to 7ig. 3, with the
dividing streamiine denoted s 0B, we signify the
trailing adge angle as v, the angle that 0B makes
with the upper surface AQ 2s . and that with the
lower surface as 3. In what follows, we identify




2ach of nine possible cases that can occur with
the ollowing shorthand notation exemplified as
ollows:

[}
w
'

3
n
=
w
v
1

"
w
)
[
4
A
v
]

(3221 -0u-v)
The "truth table" indicating the nine cases is
LL LG LE
L GG GE

w

G

1 s

Introducing the notation in which + subscripts
and superscriots signify conditions above A8 and
- subscriots and superscripts cenote goints below
this line, we now axamine 2ach of the ocossibili-
ties. In wnat fcllows, let 2g be the stagnation
oressure and p be i%s static value. Sxcept wnere
o;hgrnisg Qoted. we will 2150 3assume that
=}

> oj".

Pg
A1l P9ssibilities Involving 5 Zxceot 5G

These must be ruled out on the basis that on
the G side, D = -» wnicn is unphysical on its own
merits. Furthermore, p would equal pg, the stagna-
tion value on the | side, ind aquality of pressure
across the slip line would therefore be impossible.

("]
(A

This must be excluded since it would imply
3 + 4 > 27 which is clearly geometricaily
impossible.

LL
This impiies that
+ +
D’Dg
P = °6 A

To realize pressure equality across the slip lines,
this must be ruled out as impossible for all cases
axceot wnen n; 2 pa. This also is a corollary

of the Kutta caondition applicable to unblown
configurations.

Jia

This is associated with v = 3, 1.e.: 2 cusped

trailing edge or flat plate for 95 = 93

il

0
U

Here, o < :a < :5. However, 9 = DS in this
case wnich makes aguilibration of the static pres-
> &
sures o and p impossible across the slip line AB.

2

This is the oanly viable s0ssibility. Here,
9 < pa. In fact, by 3erroulli and slio line
sressufe continuity, we have

n

1 - =9 =9, D)
? Py 3 P EN (21)

where u” is the upper stream speed at 0. To
satisfy (21), the "slip" velocity u*™ is thus

-

2( o)

Py - P

Rl \/_.._0_.2_ (22a)
)

Remarks

If pa < 95' then LE is the only possibility

VJ200g - Pg)
Faey s S| 0 (225)

e

with

For a hypotheticai case in wnich p& > p; in a real

ohysical flow (fluctuating above and below
equality), then a tri-stable configuration could
evolve which would osciliate between LL, LE and :L.

Nonuniformities of Second Qrder Aporoximation

From (20), we find that the other nonuniformity
referred to following £q. (19) is associated with
the following behavior

glme EIR g reg
where, we distinguish the “ollowing possibilities
as § = Sep

R E

Qg »e 8 > %% or v < %

- Ve -
(i) a;+0,3<Sorv> 3

Der -
R i fEalte W 2 : -
(iii) a, inite =0 , fisseorysu
Case (i) is the most practical situation and will
necessitate an inner solution for the transition
layer %o join the wall and “ree jet flows. Sefore
considering this, we Sriefly investigate the
vorticity which can be snhown to de given by
«3/2 =1/ .
- 3/- “0 + e ‘/2 '4)'[ $ sae ¥ where

@ =

3u
. el u
g * 3w = 0
v S PO

@y ’QH'-T’.W’CQnStants:‘.

In spite of the constant initial “low, a non-zere
vorticity is thus introduced by the Sody curvature.
3y contrast, a ootential vortex over a circular
cylindrical surface would have hrag 3 linear

initial profile to produce an irrotational flow.

{nner Problem

Anticipating large gradients near I = I.. we
consider the following asymptotic expansions-valid
in the inner limit

ey

5 * (§=8pg)/A{(z) 4 ** = /7 fixed a8 £<0 (23)

e v 4 L TS o
a " s . ey
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where C nas deen assumed to be unity in (18):

0

Bt e a(n)umlTn) - e (2¢a)
qn

T * 3(x)ve(g*.a%) + oo (24b)
ER » px(zrint) » e (24c)

where, p is a1 reference pressure and

AW
i

halo-, il e

e
Here, R* represents the caenterline radius of
curvature.

To obtain the richest continuity equation
assuming R* > 0(<), we out

%:i
£ give
Su* | Sv*
3—Q_—,-+%—,=0. (25)

Roughly, the matching condition for u* is

i' - .u)

uk - q .
-0

4

Far v*, we introduce the intermediate variabie
2/ (-\
S “ /).

Matching the inner and outer solutions by writ-
ing 2ach in intermediate variables, we assert that

3(=)ve(} 5,00%) = /7 by(uE, Jug(w) g

wnere the double arrow signifies asymptotic equai-
ity. Zauation (26) impiies that

54(0) = v*(-=,n*) = constant = 0
and
3= /v, =1/~ .
Substituting the axpansions (24) into the

momentum equations, the remaining equations in
the distinguished limit

\22,82/7 as/t (27)
are

Iv* 3 1 ipgw

ol R S (282)

Ig* *

Squation /28b) can be integrated directly to give
the linearized 3ernoulli relation

T = o 9: - F"")

-

«nere F is an arbitrary function of integration.
The system (28) is aquivalent to the foilowing
scalar equations

Ap* = I+ 2 =0 (29a)
3€t: 3n*2
AV* 3l [« T/R®)Y (29b)

The appropriate boundary value problem for (29)
involves specializations of boundary conditions
already discussed and conditions obtained from
matching at the upstream and Jownstream boundaries
of a rectangular domain. The jet boundaries are
not free to this order, deing at n* = =1. A com-
plete solution of the probtlem subject %o these
conditions is in progress. As an intarim step, a
special form of an "inner inner" soiution is indi-
cated for the jet flow immeciately above %the trail-
ing edge. To illustrate the singular benavior,
vorticity associated with a source term in the
Poisson equation for u obtained from (28) and (25)
is suppressed by a choice of suitable jet exit
conditions. In addition, the rignt hand side of
(29b) is assumed to vanish by linearization about
£ = Z7g in the subscale assumed.

For purposes of the analysis, the configuration
in Fig. 3 is considered. Here, . = 7, representing
the EL arrangement which was oroven previousiy to
be appropriate.

On appiying Bernoulli's theorem con the upper
and lower sides of the trailing edge, and employing
the condition that the pressure is continuous
across the dividing streamline 08 we obtain
using (20')

+ =
$ 25 = P
u” oz u(x,0+) = ‘ilfr‘ig

o LSS
=2 x-(s ])
x 1*-—;- o “eeel a5 x ¢ 0 (30)
25 po e po

where 5> is the density.

The solution for the jet flow in the immediate
neighborhood of the trailing edge satisfies the
appropriate boundary value probiem for the upper
half plane y > 0 (Fig. 4) in wnich flow angle and
pressure are matched. Here, continuity of flow
turning signifies that in some "inner" region

v(x,0) =0, x<0 (31a)

v(x,0) =0 ,x+0 (31b)
and

u(x,0+) = A + 3x* (32)

where A and 8 are constants determined from (31).
The appropriate harmonic functions satisfying
(31) and (32) are

Fr(z) = ay+ a1e"7° = (33a)

usage a1r’ cos a(3-7) =Re F'(2) (33b)

it




for wnich

u(.‘.o\,sajowlo--. , 10 (34a)
u(x.O)-a,J’a.'xl:os yr+ere x4+ 0 (34b)
v(x,0) =0 , xt0 (34c)
/(x.O)--a,‘.("sinr: L (34q)

The shape of the slip line is determined by apply-
ing Zas. (34) in the tangency relation. DOenoting
the jet bdoundary by

J=y-=-38(x)=20
then the flow tangency relation (u,v) + 78 = 0
implies that

300 =413 g

so that

2
a,x a
Tl =a—’ P+ oo as x=0 (35)
33'¢axx cosar 0

g' =

for 8<m .

Hook of Dividing Streamline — Discussion

Zquation (35) implies that

&
/
“\;() 3z .3 a_ X

o}

x-1

Thus
o 1%
3'(x)+= as x=0 if veg

in spite of the fact that
'(x)+0 as x-0,

i.e., a "hook" of infinite curvature but with zero
slope develops at the intersaction of the dividing
streamline and the trailing adge. This fact has
significant conseauences regarding the generation
of 1ift of blewn 2irfoils. In this context, the
classical Spence solution fails to treat this
detail since it is cast in a thin airfoil theory
framework. [t gives a logarithmic singularity at
the trailing adge in contrast to that of the solu-
tion apove. The rapresentation of 3 near x=0 ‘rom
(38} provides the initial conditions for the deter-
mination of the lower boundary of the jet and the
vorticity it carries. This in turn determines the
running circulation and the total 1ift. A systema-
tic matching procedure o join this solution to the
outer flow and achieve a consistent numerical
formulation has apparently not been reoorted in the
Titerature, even “or the unblown incompressible
case corresponding %o thin airfoil theory, i.2.,
for vw<e i,

Comorassible Trailing Sdges

Consider again the configuration of Fig. 3.
Here we analyze first the case where

With the usual isentropic relation

the local Macnh number, M, can adjust in a continu-
ous way in order that the low recompresses
smoothly from 3 to 0. At 0, M is single valued=M,
and adjusts itself such that the pressure p*
equals 95, in accord with the isentropic relaticn,
assuming “that the flow stagnates at 0 on the lower
side. The only way this can be realized is with
an tL configuration. 3y contrast, a discontinuous
transition can occur and is illustrated schematic-
ally in Fig. 3a, and is associated with a GL
arrangement. [n some respects the configuration
resempies flcw cver a solid wail expansion corner
consisting of expansion “an interacting with a
sonic line from the corner. If the solid configu-
ration were reoresentative of this “low with the
free boundary slip line, compression waves would
reflect off the sonic line ana “arm 3 snock
envelope which wouid De necessary %0 reccmpress
the flow from an overexpanded value beicw the crit-
ical pf to the oy levei. Additional reflections
can be produced from the upper siip line CD.

This discontinuous transition leads to 2 multival-
ued pressyre 3t 0. The continuous and discontinu-
ous processes are iliustrated schematicaily in
Figs. Sb and 5c, respectiveiy. In Fig. 5b, the
recompression takes place on the line 30. In

Fig. 5¢c it occurs on 00'0"Q' signifying the
confluence of multiple states at 3. Here, the
dashed line element 0"0"' signifies a shock jump.
Experimental data strongly suggests that zs in the
incompressibie case, the L configuration is the
most probable situation,since on a gualitative
basis, it represants a path of least resistance.
Presumably, a more rigorous argument 0 SubDor:
this conjecture wouid rely on some sort of stabii-
ity analysis.

For p. = D., the dividing streamiine would
again bisgc: :ﬂe trailing edge since the “low in
the immediate vicinity would be incompressible ang
the reasoning in the orevious section would apply.
For the improbable case of pj < 93 the LE configus
ration would be applicable ag for“the incomopressis
bie situation.

2.4 Incomoressibie Small Ceflaction Theoryv

3ecause of its jotential value “or simplii<ied
treatment of the trailing adge neighoornood and
matching with the outer flow, we consider in this
section a small deflection specialization of the
previous thin jet theory. For purposes of illus-
trating the theory, we revert back to incomoressi-
ble flow. We consider a section of the jet
far away ‘rom the trailing edge region depictad
in Fig. 6. The upper and lower slip lines are

given zy
] s v o« 38 ( = Ra )
o .bu\x) 0 (36a)
Jy*y - 8b,(x) =0 (36b)

where the slope of the slip line is assumed to be
of the same order of the characteristic thickness

ey s Saaie ™~




5atio.5 ar incidence x of the airfqil. Mareqver,
(36) implies that the jet thickness is also of the
same order.

~ We assume asymptotic 2xpansions for the veloc-
1ty vector § and pressure P can be written in the
form

S-(bui.'_sl 2 [‘!O< ?)UO(I'y) - ;1u1 - --.}?

+ [30(5)\,04»...]34.... (37a)
p-p
e [3) ran (
o = <(3)pg*+eq{s)py + (37%)
. . ¥-db,(x)
for x = X,7 = M o fixed as 3+9, where U is

the freestream velocity, c is the density, and P_
is the ambient oressure. The condition tnat :he
lower slip 1ine is a streamiine of the jet flow
reads

q- %, = 0

wnich to dominant crder implies

s |
Va(x,0) = == by (x) (38a)

which orovides a non-trivial case only if
—=1. {38b)
3asad on (38b),a similar relation is obtained
on the upper slip line which is

vg(x.:u-bz) = b;(x) : (38¢)

On substitution of (37) and (38b) into the exact
incompressible Zuler equations, the following
system avoives:
«_Momen tum 3
0
Ouo : - P Do (393)
16 X
4 _Momentum

<

Ov., = -

P
0 5136 07

Continuity
=0 (39¢)

where

3 3
A D=y —+y

-0 e
% 37 03 0% -

w
x I“’
L}

@
>q|“‘

On inspection of the system (33), we note the
following cossibilities

-~
-
+

o

<
(11) _ZO, . (40)
3’20

Case (i1) appears to be the most interesting of
the three since i) leads to constant verticai and
norizontal velocity along streamlines which
restricts the free surtface shape and (iii) leads
to no pressure difference across the jet to this
order wnich is of limitad practical interest. For
case (ii), we introduce tne stream Function
mapping

(X,;) il (;'U) (4‘)

in wnich

e

3w - Yo

J=zu 3:
03x

Under (4Q) with (41), £qs. (39) become
x_Momentum
3u

. ’
UO_;;— 0 (423/

y_Momentum

v 3o
-;;L — (42b)

Continuity

3 5y v .
(?x' "o E) 2o & el kae)

The solution of (42) subject to the coundary
conditions is

ug = U(v) (43a)

vg * By (x)U(v) (43b)
'

p, - ax) = b3t [ utune (43¢)
Y

Here, 2,(x) and 5,(x) are the oressure and slope

<

of the lower 3lip line of the jet. Zgs. (33)

indicate that the norizontal velocity component is




b

convected along streamiines from a prescribed
initial distribution at some upstream station. If
this distribution is constant, i.e., if

UO(’JW) = C )

then (43) specializes to

ug = C (44a)
vg = € bylx) (44b)
b=y = b,(x) {44c)
B, = 9= - Coy(x) (v, -v) (44d)

b - Db, = const.
d 4

Note that Sgs. (44) are consistent with Eqs. (16).
In the present small deflection context, we 3o
peyond the analysis associated with (16) and
‘patch" to the outer flow to determine the slip
line deflection functions b,,by(x) and the gauge
functions ag and <g. The term "patch" is used in
contrast to 'match”’ in the sense that conditions
are satisfied at a fixed boundary at a finite dis-
tance in the former (i.e., the slip line) in con-
trast to the latter where they are satisfied in an
asymptotic manner, generally, at an infinite
distance.

Patching is achieved using a "blending layer"
at a vertical distance of 0(4) from the slip line
and airfoil. The latter will not enter into the
present discussion but wiil be considered in con-
nection with the trailing edge behavior. The
biending layer will also be used to validate the
usual Taylar's serias transfer of boundary condi-
tions emnloyed to define the outer flow. A treat-
ment of similar blending layers is discussed in
Colel{7}) in connection with incompressible flows
around unblown bodies of revolution. However,
some different features arise in the present con-
text. In accord with the previous remarks, we
consider the shaded region shown in Fig. 7. We
consider the antire external flow field Re in
Fig. 1 and in particular the blending layer as
irrotational. In anticipation with matghing with
the outer flow, we assume “hat the blending layer
is a perturbation on the freestream. Accordingly,
the asymptotic 2xpansions for the potential % and
pressure are

%*x*‘u(a')w(x.y')*-" , Xyy* fixed
where
y* = y/(8) .
Introducing the condition that the slip line is a

streamiine of the sxternal flow, gives on the
Joper Tine éy* 0 the relation

I " = Y v (<38
_1‘..&)(,‘4 4],, (Sbuo1)’0

< jon

i V8 4
bu\x/) e bu(x) ’ (45)

P ,(x,

i

To preserve the structure of the secona argument
of the right hand side of (45), we assert that

& & Y .

Furthermore, we obtain the most general boundary
condition in (45) if we let

(T 3. L
Now if A = 3%/3x? + 3%/3y%, we have that

A =0
which implies that one-dimensicnal flow given oy

Pywyw 0 (46)
ar

¢= a(x)y* + b

= b;(x)y' + b(x) , (b; = Si)

by (45). A similar result for the lower blending
layer is

V= biy* + b(x) .

Now the well known outer expansion for the region
outside the "inner" blending layer is

%zx#ﬁ@(x, ) + eee
X,y ‘ixed as -0 .,

Matching of the inner and outaer expansicns can
be achieved by introdyction of an intermediate
variable

\4

y“ E )

where § << n << 1. The matching condition is
r b
i = i ( = { y (3
L llg t°outer‘x’yw) YinneriXs¥q)  (47)

where

b
—olut-sr- = X+ SQ(XQ-‘J‘} > oo

ke / \ Al 22
= X+ SL@(X’O‘)"'.YQQ,!\X'O'*/' + ...] ‘J(b'f
{

@ - ny_
—Tn = x*30(x,04) + 5=!~b&(x) it b(x,‘] + e

where the second term of [48b) has been interposed
for matching and can be construed 3as an additionmal
element lumped into 5(x) of the dominant inner
oroblem associated with (46). Appiication of (47)
and a similar argument for the lower blending
layer gives for matching that

s, (x,0+) = b;(x) =

\ (x,0-) = b,(x) (49)
J J .

J

which is the condition anticioated from tangent
flow. Determination of 5(x) in (48b) depends 2n




the inner limit of the outer representation of the
flow field as 2 line vortex extending to downstream
infinity whose local strength is proporcional to
the jump in pressure across the jet

[ox] = ox(x,0+) - 3x(x,0-). The subsequent argument
should be similar in some respects to that associ-
ated with the finite line source discussed in

Ref. 7. In this connection, the details of the
determination of b(x) will be discussed elsewhere.

To determine the gauge functions <q and g
appearing in (37), the static pressures of the jet
are equilibrated to those of the blending layer at
the slip line. From the intarposed term in (48b)
and 3ernoulli's relation in the blending layer,
the external pressure Pe is given by

Pe’pa

(50)

= ‘:‘pe + eoe

ou?
in both inner and outer limits, where on the slip
lines

De(x,bu(x)) = - o, (x,04) (51a)

Polxsby(x)) = - 5 (x,0-) . (51b)

From (51) and continuity of pressure acrass the
slip line it is obvious therefore that
s 4§

<q (52a)

and

oy = 7% gy T A (525)

fyrthermore, 3ernoulli also implies that

sy = 52

again in agreement with Egs. (18) for the jet cen-
tariine of radius of curvature 0(5-1). Note that
the vorticity uy- vy of the general solution (43)
is ¢(3=%), although in the special case (44) it is
0(5’t). This fact appears not to affect the result
(44d) which is in agreement with the Spence rela-
tion obtained under the assumption of irrotational
potential vortex flow for a jet element.

It is significant %0 note that a nonuniformity
occurs near the trailing adge point C in Fig. 1.
The order of the pressure pgerturpations in (51b)
are incorrect near the trailing edge stagnation
region of the flow belcw the siip line, i.e.,

PP
L2 00 .
0,42

Since pressure is to be matched across the slip
line, this imolies a corresponding change of
orders in the jet and hence, (52a) becomes
fnvalid. This feature as well as the blending
layer structure are anticipated as important
aspects of the transonic probiem, and are under
investigation. As indicated previously, local
axpansions are required to deal with the
nonuniformities.

£xternal Flow

For distances large compared %o the jet width,
the fine structure of tne jet is important only
insofar as it provides matching conditions to the
irrotationa! flow field outside itseif. In incom-
pressible flow, this external "outer" flow can be
determined by thin airfoil theory. At transonic
soeeds, small disturbance theory is appropriate
for this region. Details of the asymptotic match-
ing procedure have been discussed for incompres-
sible flow in the previous section. Based on these
developments and the earlier ones for arpitrary
deflection thin jets in Section 2.2, the houndary
conditions for the outer flow in the incompressible
and transonic cases for the jet flap and upper sur-
face blowing are now indicated.

Jet Flap
Referring tc Fig. 3, the aquation of an airfoil
can be given as

y = 3f(x)

and the jet is

y = 39(x)

where 5 is the thickness ratio of the airfoil, f i
the upper or lower surface and involves the angle
of attack which is of the same order of 3. Con-
sidering 2 small disturbance approximation, we
obtain

&y
-1, ix? 2 B s e
§ BEL 2 2]3/2 5g(x)
& *(%%)] D =8 J

Letting the “outer" expansion oressure coefficient
be represented as

P-p
i & 5P(x‘y) + ece
U2

then by virtue of a generalization of (42)

(PO = - €3°(x) = = 205, (s)
where
7
2o f qun)/_au; - o) (sda)

and » is a perturbation potential. Note that (53)

can also be obtained from (d4d).

Squation (53) is the relation used in conjunc-
tion with the jet tangency relation

ay(x.a) = g'(x) (83b)
and the airfoil boundary conditicns to determine
the external flow field. These relations coincide

with those derived by Spence. They can be generai-
ized for transonic flow by olacing the - inside
the integrand in (Sda).




Upper Surface 3lowing

To treat conditions on the blown part of the
airfoil £q. (53) can be applied by approximating
the radius R by (f")"® to obtain the wall pres-
sures, and uysing the airfoil and jet boundary
conditions to determine the upper slip line jet
pressures.

from the arbitrary deflection thin jet theory
derived in Section 2.2, it can be seen that rota-
tional flow produces the same pressure jumps
across the jet in the dominant approximation as
the irrotational Spence models. Correspondingly,
it can be shown that to within factors invoiving
the density, qualitatively similar results are
obtained for transonic flow. Another important
aspect of the asymptotic representations derived
here is that they lead to higher aporoximations
for the structure of the jet and external flow
wnicnh can be systematically obtaines. Finally,
the anmalytical solutions described above allow
the systematic assessment of the affects of initial
vorticity and skewness wnich are inaccessible to
other theories.

3.0 Results and Discussion for
iransonic Upper Surface 3lowing

A successive line overrelaxation (SLOR) scheme
w#ithin a Karman Guderley framework has been used
to compute the flow field over an upper surface
Slown airfoil. On the blown portion, the jump
conditions across the jet are determined by the
asymptotic resuits given in previous sections,
i.e., 2gs. (53) and (54b). ?2roviding that the
region is not %oo close to the jet axit or trail-
ing adge, the streamwise gradients can be
neglected in the entrooy and veiocity component
narallel o the wall. Away from these regions,
the pressure gradient perpendicuiar to the stream-
lines is balanced by centrifugal force. For the
ragion near the jet exit, these assumptions become
invalid. 4ere, the scale of the gradients in the
streamwise direction become important, principally
due to the influence of wave interactions with the
slio line. Similar fine structures occur near the
trailing edge where the flow can stagnate on the
unblown side, depending on the ratio of the stag-
nation pressure of the jet to the ambient stagna-
tion value. For incompressibie flow, the previous
sections have discussed the tri-stable equilibrium
at the trailing edge corresponding to the value of
the stagnation pressure ratio, which leads to the
dividing streamline leaving tangent to the upper
surface if this is greater than unity ("EL" con-
figuration). Consistent with the previous discus-
sion, the appropriate generalization to transonic
flow was assumed 31so o be ZL for a single valued
gressure without a shock in that location. This
assumption has been altered :o assess the sensitive
ity of the flow to the dividing streamiine angle.
[n this connection, surface pressures for the
dividing streamiine bisacting the trailing eage
angle (as it would in incompressibie flow) were
compared with those for the ZL arrangement. Sased
on these studies, significant differences are
anticipated only “or large incidences and trailing
adge angles.

Typical results obtained from the computa-
tional model are shown in Fig. 9 in which the flow
over a thick airfoil designed at Rockwell's
Columbus Afrcraft Jivision (CAD) was analyzed with

the SLOR code. Here, the pressures for various
values of the blcwing coefficient C; are comparec
against those for the unplown case it a freestream
Macn numper M_ = 0.703, and angle of attack

a = 0°, Substantial lift augmentation is evident
for biowing. Also evident is the associated rear-
ward motion of the sheck with increased blowing
and sectional loading as if the incidence is
increased.

Further parametric studies are provided in
Fig. 10 which indicate the affect of parailel dis-
placement of the slat xj (in units of the cnerd),

-on the chordwise pressures. Three positions of

the siot xj=0.5, 0.65 ana 0.8 are shown. No sys-
tematic trend in the biown pressures is exhibited
on this airfoil with downstream slot movement for
fixed C;. Evident nowever is a slight intensifi-
cation gf the termminating shock with slat down-
stream motion although its position remains .nal-
tered. DOespita the limitations of the modeil to
describe the fine structure of the jet exit
region, a small suction peak which has been
observed in a2xperiments is exhibited in this
vicinity for x5=0.5. In Fig. 11, the correspond-
ing increase in 1ift coefficient C_ with slot
dewnstream movement is also shown as well as the
increase in the size of the supersonic region.

In Fig. 12, the increase of 1ift with blowing
coefficient as well as size of the supersonic
region is quantified.

Tests of the adequacy of the foregoing model
to simulate realistic transonic USB airfoil flows
have been inhibited by the lack of suitadble
axperimental data. [nformation 2xists cnly for
highly three-dimensionai configurations, large
thickness, or incigence in ranges beyond the
validity of the assumptions of small disturbance
theory. Another restriction is the unavailability
of the associatead geometric data and flow diagnos-
tics accomoanying the tests. The resuits of
Yoshihara and his coworkers were uyseful in this
connection and allowed us to compare the jet flap
specialized version of the US3 theory in Ref. 2.
for the simulations described in this paper, tasts
performed by N.C. Freeman at NPL on a USB modifiea

% thick RAE 102 airfoil and described in Ref. 3,
appear to be the most suitable results for com-
parison at present. Unfortunately, the angle of
attack associated with the NPL data is 6° wnich
is marginal for the application of a smail
disturbance model.

Figure 13 indicates comparisons of chorawise
pressures for various values of C;. Also shown
are schlierens indicating the assdciatea flow
field structure. Turning to the C;=0 resuits
(Part (a)), massive shock induced 3eparation is
indicated and is apparently initiated at the dewn-
stream 1imb of the lambda shock on the upper sur-
face. This is reflected in the classicai 2rosion
of the suction plateau and is responsible ‘or the
indicated disagreement between the inviscid compu-
tational results and the data. For these tests,
nominal tangential biowing with a siot height of
0.07% of the chord was used. The slot location is
15% downstream of the nose. The Mach number M
immediately above the slip line at the slot
(point A in Fig. 1) is aporoximataly 1.29 for
both C:'s indicated. For C:20.017, the slot Mach
number Me has been astimated as 1.79 ana for
¢, =0.008, M >2.36.
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Comparison between theory and 2xperiment in
Part (b) of Fig. 13 indicates reduced discrepancies
on the upper surface associated with the limited
separation. [n Part (¢), the agreement is corres-
pondingly further improved.

To achieve adequate realism, it is important to
discuss factors responsible for the disagreements.
One feature not captuyred by the USB simulation is
the pressure spike at the slot location. B8ased on
the slaot size, the streamwise scale for this
ohenomenon is at least an order of magnitude
greater than the characteristic wavelength of a
Mach diamond pattern in the wall jet. These fluc-
tuations may not be resolvable with conventional
pressure tap arrangements for the thin slot
employed in the tests. [f a rough mogel of a
coflowing inviscid supersonic wall jet over a flat
plate is used to describe the flow near the slot,
the ipproach to a final steady state may Se
damped oscillatory or monotone depending on
wanether the reflection coefficient R which is
3iven by

R = =T (85)
where

R EV LN T B N N

is respectively positive or negative.

The reiaxation length L to achieve the down-
stream pressure in units of the axit height is of
the order of 2n R which can be approximately
5 to 30 in the present case depending on the
accuracy of the sstimate for Ma. Note in this
connection that

”2
3<Q far 1<U<E , and M <M<=

3¢

e
R>0 for F=<M<SM_ .
3 e

for the submerged case, R-1, (“e >>M), and the
Prandt]l periodic pattern is obtained, with no
radfation of anergy to the external flow.

These facts suggest that one factor that may
Se responsible for the observed spike is the
internal cdec3y process in the jet. I[f transcnic
effects and wall curvature are accounted for, the
presence of “ballooning” and throats in the jet
may also Se contributory. We have discussed such
phenomena in connection with submerged transonic
wall jets in Ref. 10 and have raeparfad analagous
resyits far the coflowing case in Ref. 11. Selec-
tion rules in tarms of Mg and M for the existence
of throats in the jet near field are given in
Ref. 12 wnich are based on an integral form of the
<arman Guderiey equation. A rough sketch of the
wave system that could explain the spikes in
Figs. 13b and 13¢ is shown in Fig. 14, Yet
another phencmenon that wouid have a similar wave
pattern would Se a slight upward motion of the jet
due %0 viscous mixing or a misalignment with the
surface tangent at Joint A,

13

Turning now to the giscrepancy of the /alues
shown On the rear suyrface (downstream of 0.5¢c) in
Fig. 13c, we note that in spite of the obvious
elimination of separation, a thick viscous wall jet
is present. Oownstream diffusion will affect the
application of the Spence relation on the blown
portion as well as the shock jump. I[n view of the
wall jet thickness shown on the schlierens, this
factor appears to be more significant than shock
obliqueness at its foct. A near term refinement
is being implemented employing a coupled inviscid-
viscous model using second order boundary layer
corrections to the Spence boundary conaitions
accounting for axial gradients of the displacement
and momentum thickness. Qnce these refinements are
incorporated, systematic optimization between
separation suppression, wave drag minimization, and
supercirculation control will be possible. [t is
envisioned that the design techniques contained in
Refs. 13-15 will augment this capability by provid-
ing methods %o modulate shock formation in concer:
with the blowing effects.

4.0 Ccnclusions

Asymptotic and computational models have been
used to opbtain the flow over upper surface blown
(USB) airfoils in incompressible and transonic
flow. The treatment involves a detailed analysis
of the flow in the jet. The analytical and compu-
tational results indicate that

@ [n the thin jet small deflection approxima-
tion, the pressure jumps associated
with the Spence theory prevail even if the
flow is rotational and comoressibie.

® The asymptotic deveiopments provided 211ow
further systematic refinements.

@ Etffects associated with initial skewness
and vorticity inaccessible to other
theories can be assessed.

® The dividing streamline leaves tangent to
the upper surface in incompressible low.

@ Computational resuits obtained for transonic
US3 configurations indicate significant
enhancements of !ifting pressures associated
with dlowing.

@® Comparisons with experiment indicate the
need for refinements incorporating wave
interaction phenomena near the jet 2xit
as well as viscous interaction processes
in the downstream portion of the wall jet.
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